

New Jersey Center for Teaching and Learning

Progressive Science Initiative

This material is made freely available at www.njctl.org and is intended for the non-commercial use of students and teachers. These materials may not be used for any commercial purpose without the written permission of the owners. NJCTL maintains its website for the convenience of teachers who wish to make their work available to other teachers, participate in a virtual professional learning community, and/or provide access to course materials to parents, students and others.

Click to go to website:
www.njctl.org

PHYSICS Solving Equations

April 2012
www.njctl.org

Solving for a Variable

Our goal is to be able to solve any equation for any variable that appears in it.

Let's look at a simple equation first.

$$
s=\frac{d}{t}
$$

The variables in this equation are s, d and t .
Solving for a variable means having it alone on the left side.
This equation is currently solved for "s".

The Rules

Like in any game there are a few rules.

1. To "undo" a mathematical operation, you must do the opposite.
2. You can do anything you want (except divide by zero) to one side of an equation, as long as you do the same thing to the other.
3. If there is more than one operation going on, you must undo them in the opposite order in which you would do them, the opposite of the "order of operations."
4. You can always switch the left and right sides of an equation.

The Rules

Let's solve this equation for "d"

$$
s=\frac{d}{t}
$$

That means that when we're done we'll have d alone on the left side of the equation.

1 First, is d already ALONE? If not, what is with it?
○A s
OB d
OC t
OD it is already alone

$$
s=\frac{d}{t}
$$

2 What mathematical operation connects d and t ?
A dis added to \mathbf{t}
OB \mathbf{d} is multiplied by \mathbf{t}
OC \mathbf{d} is divided by \mathbf{t}
OD \mathbf{t} is subtracted from \mathbf{d}

$$
s=\frac{d}{t}
$$

3 What is the opposite of dividing d by t?

A dividing tby \mathbf{d}
O dividing by sinto t
\bigcirc C multiplying d by t
○ multiplying by thy \mathbf{d}

$$
s=\frac{d}{t}
$$

Rule 1. To "undo" a mathematical operation, you must do the opposite.

4 What must we also do if we multiply the right side by t?

A divide the left side by \mathbf{t}
OB multiply the left side by \mathbf{t}
○ \mathbf{C} divide the left side by d
○ D divide the left side by d

$$
s=\frac{d}{t}
$$

Rule 2. You can do anything you want (except divide by zero) to one side of an equation, as long as you do the same thing to the other.

5 Is there more than one mathematical operation acting on "d"?

OYes
ONo

$$
s=\frac{d}{t}
$$

Rule 3. If there is more than one operation going on, you must undo them in the opposite order in which you would do them, the opposite of the "order of operations."

Applying Rules 1 and 2

1. To "undo" a mathematical operation, you must do the opposite.

$$
s=\frac{d}{t}
$$

2. You can do anything you want (except divide by zero) to one side of an equation, as long as you do the same thing to the other. So we undo d being divided by t, by multiplying both sides by t.

$$
\begin{array}{rlr}
(\mathrm{t}) \mathrm{s}=\frac{\mathrm{d}}{\ell}(t) & \begin{array}{l}
\text { The order of th th } \\
\text { matter, but we } \\
\text { alphabetical sc } \\
\mathrm{ts}
\end{array}=\mathrm{d} & \begin{array}{l}
\text { are we done? }
\end{array} \\
\mathbf{s t}=\mathrm{d} & \text { Are }
\end{array}
$$

Applying Rule 4

Rule 4. You can always switch the left and right sides of an equation.

We've now solved our equation for d .
A harder problem is to solve it for t.

Solving for \mathbf{t}

Let's solve this equation for "t"

$$
s=\frac{d}{t}
$$

That means that when we're done we'll have t alone on the left side of the equation.

6 Is t already ALONE? If not, what is with it?

○ \mathbf{A}
$\bigcirc \mathbf{B} \mathbf{d}$
$\bigcirc \mathbf{C} \quad \mathbf{t}$
D it is already alone

$$
s=\frac{d}{t}
$$

7 What mathematical operation connects d to t?
O \mathbf{t} is being divided by \mathbf{d}
OB d is being divided by t
OC \mathbf{d} is being multiplied by t
OD \mathbf{t} is being subtracted from \mathbf{d}

$$
s=\frac{d}{t}
$$

8 What is the opposite of dividing d by t?

A dividing d by t
B dividing st by \mathbf{t}
\bigcirc C multiplying d by t
\bigcirc D multiplying tbyd

$$
s=\frac{d}{t}
$$

Rule 1. To "undo" a mathematical operation, you must do the opposite.

9 What must we do if we multiply the right side by t?

A divide the left side by \mathbf{t}
○ B multiply the left side by t
○ \mathbf{C} divide the left side by d
○ D divide the left side by d

$$
s=\frac{d}{t}
$$

Rule 2. You can do anything you want (except divide by zero) to one side of an equation, as long as you do the same thing to the other.

10 Is there more than one mathematical operation acting on "d"?

OYes
ONo

$$
s=\frac{d}{t}
$$

Rule 3. If there is more than one operation going on, you must undo them in the opposite order in which you would do them, the opposite of the "order of operations."

Solving for T

1. To "undo" a mathematical operation, you must do the opposite.

$$
s=\frac{d}{t}
$$

2. You can do anything you want (except divide by zero) to one side of an equation, as long as you do the same thing to the other. So we undo d being divided by t, by multiplying both sides by t.

$$
\begin{gathered}
(t) s=\frac{d}{\not t}^{(t)} \\
s t=d
\end{gathered}
$$

Are we done?

11 Is t ALONE? If not, what is with it?
○A s
OB d
○C \mathbf{t}
OD it is already alone
st $=\mathbf{d}$

12 What mathematical operation connects sto t?
O \mathbf{t} is being divided by \mathbf{d}
OB \mathbf{t} is being divided into s
OC \boldsymbol{t} is being multiplied by s
OD \mathbf{t} is being subtracted from \mathbf{s}
st $=d$

13 What is the opposite of multiplying t by s ?
O dividing tbys
O \mathbf{B} dividing \mathbf{t} by \mathbf{t}
O multiplying tby t
O \mathbf{D} multiplying by t by s
st $=d$

Solving for t

1. To "undo" a mathematical operation, you must do the opposite.

$$
s t=\frac{d}{s}
$$

2. You can do anything you want (except divide by zero) to one side of an equation, as long as you do the same thing to the other.

$$
\frac{s t}{\phi}=\frac{d}{s}
$$

14 Is t ALONE on the left?

OA s
OB d
OC \mathbf{t}
$O D$ it is alone

$$
t=\frac{d}{s}
$$

Solving for \mathbf{v} 。

Let's solve this equation for " V 。"

$$
v=v_{o}+a t
$$

That means that when we're done
we'll have v_{0} alone
on the left side of the equation.

15 Is v_{o} already ALONE? If not, what is with it?
O A only a
OB only t
C at
O D it is already alone
$\mathbf{v}=\mathbf{v}_{\mathbf{o}}+\mathrm{at}$

16 What mathematical operation connects at to v ?
OA "at" is being divided by $\mathrm{v}_{\text {。 }}$
OB "at" is being added to $v_{\text {。 }}$
OC v_{o} is being multiplied by "at"
OD v_{o} is being divided by "at"

$$
v=v_{0}+a t
$$

17 What is the opposite of adding at to v_{o} ?

- A dividing by \mathbf{v}_{o} by "at" into \mathbf{t}

○ B subtracting v_{o} from "at"
○ \mathbf{C} subtracting "at" from \mathbf{v}_{0}
○ D dividing "at" by \mathbf{v} 。

$$
v=v_{0}+a t
$$

18 What must we do, if we subtract "at" from the right side?

- A add "at" to the left side

○ B multiply the left side by "at"
○ C subtract "at" from the left side
\bigcirc D divide the left side by $\mathbf{v}_{\text {。 }}$

$$
v=v_{0}+a t
$$

19 Is there more than one mathematical operation acting on " v "?

OYes
ONo

$$
v=v_{0}+a t
$$

Solving for \mathbf{v} 。

1. To "undo" a mathematical operation, you must do the opposite.
2. You can do anything you want (except divide by zero) to one side of an equation, as long as you do the same thing to the other.

$$
\begin{aligned}
& v=v_{0}+\text { at } \\
& - \text { at } \quad-\text { at } \\
& v-\text { at }=v_{\circ} \\
& v_{0}=v-a t
\end{aligned}
$$

Solving for a

Let's solve this equation for "a"

$$
v=v_{0}+a t
$$

That means that when we're done we'll have a alone on the left side of the equation.

20 Is a already ALONE? If not, what is with it?

- A only $\mathbf{v}_{\text {o }}$

B onlyt
\bigcirc C v_{0} and t
OD it is already alone
$v=v_{0}+a t$

21 What mathematical operation connects v_{o} to at?

○ "at" is being divided by v_{o}
○ $\mathrm{B} \quad \mathrm{v}_{0}$ is being added to "at"
○C v_{o} is being multiplied by "at"
○D v_{o} is being subtracted by "at"

$$
v=v_{0}+a t
$$

22 What is the opposite of adding v_{o} to at?
A dividing by v_{0} by at into t
O B subtracting v_{0} from at
○ \mathbf{C} subtracting at from \mathbf{v}_{0}
○ dividing at by $\mathbf{v}_{\text {。 }}$

$$
v=v_{0}+a t
$$

23 What mathematical operation connects to a?

O \mathbf{A} a is added to \mathbf{t}
OB a is multiplied by \mathbf{t}
OC \mathbf{a} is divided by t
OD \mathbf{t} is subtracted from \mathbf{a}
$\mathbf{v}=\mathrm{v}_{\mathrm{o}}+\mathrm{at}$

24 What is the opposite of multiplying a by t?

A dividing aby t .
OB dividing t by a.
○ \mathbf{C} multiplying aby \mathbf{t}
OD multiplying t by \mathbf{a}
$\mathrm{v}=\mathrm{v}_{\mathrm{o}}+\mathrm{at}$

25 What must we do, if we divide by t from the right side?

A divide the left side by a
○ multiply the left side by a
C divide the left side by \mathbf{t}
© multiply the left side by \mathbf{t}

$$
v=v_{o}+a t
$$

26 Is there more than one mathematical operation acting on "a"?

OYes
ONo

$$
v=v_{0}+a t
$$

27 Which operation should we undo first?

OA divide aby \mathbf{t}
OB subtract v_{o} from at

$$
v=v_{o}+a t
$$

28 Which operation should we undo second?

OA divide aby \mathbf{t}
OB subtract v_{o} from at

$$
v=v_{o}+a t
$$

Solving for a

1. To "undo" a mathematical operation, you must do the opposite.
2. You can do anything you want (except divide by zero) to one side of an equation, as long as you do the same thing to the other.
3. If there is more than one operation going on, you must undo them in the opposite order in which you would do

$$
\begin{aligned}
& \mathbf{v}=\mathbf{V}_{\mathbf{0}}+\mathbf{a t} \\
= & \mathbf{V}_{\circ}=\mathbf{V}_{\circ}
\end{aligned}
$$

$$
\frac{v-v_{0}}{t}=\frac{a t}{t}
$$

$$
\frac{v-v_{0}}{t}=a
$$ them, the opposite of the "order of operations."

Are we done?

Solving for t

Let's solve this equation for "t"

$$
v=v_{0}+a t
$$

That means that when we're done
we'll have t alone
on the left side of the equation.

Solving for t

1. To "undo" a mathematical operation, you must do the opposite.
2. You can do anything you want (except divide by zero) to one side of an equation, as long as you do the same thing to the other.
3. If there is more than one operation going on, you must undo them in the opposite order in which you would do them, the opposite of the "order of operations."
