New Jersey Center for Teaching and Learning

Progressive Mathematics Initiative | This material is made freely available at www.njctl.org |
| :--- |
| and is intended for the non-commercial use of |
| students and teachers. These materials may not be |
| used for any commercial purpose without the written |
| permission of the owners. NJCTL maintains its |
| website for the convenience of teachers who wish to |
| make their work available to other teachers, |
| participate in a virtual professional learning |
| community, and/or provide access to course |
| materials to parents, students and others. |

Click to go to website: www.njctl.org

Scientific Notation

8th Grade
Slide 2 / 106

2012-09-24
www.njctl.org

Table of Contents

- The purpose of scientific notation
- How to write numbers in scientific notation
- How to convert between scientific notation and standard form
- Comparing numbers in scientific notation
- Multiply and Divide with scientific notation

[^0]Slide 3 / 106

Slide 5 / 106

Slide 6 / 106

Click to reveal answers.

Scientific Notation

The examples were written in "standard form", the form we normally use. But the standard form is difficult when a number is HUGE or tiny, if it has a lot of zeros.

Scientists have come up with a more convenient method to write very LARGE and very small numbers.

Writing numbers in scientific notation doesn't change the value of the number.

Scientific Notation

Scientific Notation uses Powers of 10 to write big or small numbers more conveniently.

Using scientific notation requires us to use the rules of exponents we learned earlier. While we developed those rules for all bases, scientific notation only uses base 10

Powers of Ten

$10=10$
$10^{2}=10 \times 10=100$
$10^{3}=10 \times 10 \times 10=1,000$
$10^{4}=10 \times 10 \times 10 \times 10=10,000$ $10^{5}=10 \times 10 \times 10 \times 10 \times 10=100,000$
click here to see a video on powers of ten
which puts our universe into perspective!
Slide 11 / 106

Powers of Integers

Powers are a quick way to write repeated multiplication, just as multiplication was a quick way to write repeated addition.

These are all equivalent:
10^{3}
$(10)(10)(10)$
1000
In this case, the base is 10 and the exponent is 3.

Exponent Rules

Remember that when multiplying numbers with exponents, if the bases are the same, you write the base and add the exponents.
$2^{5} \times 2^{6}=2^{(5+6)}=2^{11}$
$3^{3} \times 3^{7}=3^{3+7}=3^{10}$
$10^{8} \times 10^{3}=10^{8+-3)}=10^{5}$
$4^{7} \times 4^{7}=4^{(7+-7)}=4^{0}=1$
\qquad \square
\qquad
\qquad \square
\qquad
\qquad
$11^{2} \times 10^{4}=$
OA $\quad 10{ }^{6}$
OB $\quad 10^{8}$
OC $\quad 10^{10}$
OD $\quad 10^{12}$
$210^{14} \times 10^{-6}=$
OA $\quad 10^{6}$
OB $\quad 10^{8}$
OC $\quad 10^{10}$
OD $\mathbf{1 0}^{12}$

$10^{-4} \times 10^{-6}=$	
$\bigcirc \mathbf{A}$	10^{-6}
$\bigcirc \mathrm{B}$	10^{-8}
$\bigcirc \mathbf{C}$	10^{-10}
OD	10^{-12}

OA $\quad 10^{-6}$
OB $\quad 10^{-8}$
10^{-10}
OD $\quad 10^{-12}$
$4 \mathbf{1 0}^{4} \times 10^{6}=$
OA 10^{6}
OB $\quad 10^{8}$
C $\quad 10^{10}$
OD $\quad 10^{12}$

Writing Large
Numbers in
Scientific Notation

Writing Large Numbers in Scientific Notation

Scientific Notation

Here are some different ways of writing 6,500.
$6,500=6.5$ thousand
6.5 thousand $=6.5 \times 1,000$
$6.5 \times 1,000=6.5 \times \beta 0$
which means that $6,500=6.5 \times 130$

6,500 is standard form of the number and 6.5×3 scientific notation

These are two ways of writing the same number.

Scientific Notation

6.5×10 isn't a lot more convenient than 6,500 .
But let's do the same thing with $7,400,000,000$
which is equal to 7.4 billion
which is $7.4 \times 1,000,000,000$
which is 7.4×10
Besides being shorter than $7,400,000,000$, its a lot easier to keep
track of the zeros in scientific notation.
And we'll see that the math gets a lot easier as well.

$$
\text { Slide } 21 \text { / } 106
$$

Scientific notation expresses numbers as the product of:
a coefficientand 10 raised tsome power
$3.78 \times 10^{\circ}$

The coefficient is always greater than or equal to one, and less than 1

In this case, the number 3,780,000 is expressed in scientific notation.

Express $\mathbf{8 7 0 , 0 0 0}$ in scientific notation

1. Write the number without the comma.
ece the decimal so that the first number will be less than 10 but greater than or equal
2. Count how many places you had to move the decimal point. This becomes the exponent of 10 .
3. Drop the zeros to the right of the right-most non-zero digit.

870000
870000×10
Slide 23 / 106
8.7×10^{5}

Express $\mathbf{5 3 , 6 0 0}$ in scientific notation

Slide 24 / 106

1. Write the number without the comma
2. Place the decimal so that the first number will be less than 10 but greater than or equal to 1 .
3. Count how many places you had to move the decimal point. This becomes the exponent of 10 .
4. Drop the zeros to the right of the right-most non-zero digit.

Express 284,000,000 in scientific notation

1. Write the number without the comma.
2. Place the decimal so that the first number will be less than 10 but greater than or equal to 1 .
3. Count how many places you had to move the decimal point. This becomes the exponent of 10 .
4. Drop the zeros to the right of the right-most non-zero digit.
\qquad

5 Which is the correct coefficient of 147,000 when it is written in scientific notation?

OA 147
OB 14.7
○C 1.47
○D. 147

6 Which is the correct coefficient of $23,400,000$ when it is written in scientific notation?

OA. 234
OB 2.34
○C 234.
OD 23.4
Slide 27 / 106

7 How many places do you need to move the decimal point to change 190,000 to $1.9 ?$

OA 3
-B 4
○ 5
OD 6

8 How many places do you need to move the decimal point to change $765,200,000,000$ to 7.652 ?

OA 11
OB 10
C 9
○D 8

9 Which of the following is 345,000,000 in scientific notation?

OA 3.45×10^{8}
OB 3.45×10^{6}
C 345×10^{6}
OD $.345 \times 10^{9}$
Slide 29 / 106
\qquad
\qquad \longrightarrow
\qquad

10 Which of these is not a number greater than one in scientific notation?
\square A $.34 \times 10^{8}$B 7.2×10^{3}C 8.9×10^{4}
D $2.2 \times \mathbf{1 0}^{-1}$
$\square E \quad 11.4 \times 10^{12}$
\square F . 41×10^{3}

Express 9,040,000,000 in scientific notation

1. Write the number without the comma.
2. Place the decimal so that the first number will be less than 10 but greater than or equal to 1 .
3. Count how many places you had to move the decimal point. This becomes the exponent of 10 .
4. Drop the zeros to the right of the right-most non-zero digit.

Express 13,030,000 in scientific notation

1. Write the number without the comma.
2. Place the decimal so that the first number will be less than 10 but greater than or equal to 1 .
3. Count how many places you had to move the decimal point. This becomes the exponent of 10 .
4. Drop the zeros to the right of the right-most non-zero digit.

Express $1,000,000,000$ in scientific notation

1. Write the number without the comma
2. Place the decimal so that the first number will be less than 10 but greater than or equal to 1 .
3. Count how many places you had to move the decimal point. This becomes the exponent of 10 .
4. Drop the zeros to the right of the right-most non-zero digit.

Slide 36 / 106

11 Which of the following is $12,300,000$ in scientific

A $\quad .123 \times 10^{8}$
OB $\quad 1.23 \times 10^{5}$
C 123×10^{5}
OD $\quad 1.23 \times 10^{7}$

notation?

Writing Small Numbers
in
Scientific Notation

Express 0.0043 in scientific notation

1. Write the number without the decimal point. 0043
2. Place the decimal so that the first number is 1 or more, but less than 10.
$0043 \times 10^{?}$
3. Count how many places you had to move the decimal point. The negative of this numbers becomes the exponent of 10 .

4. Drop the zeros to the left of the left-most nonzero digit.

Express 0.00000832 in scientific notation

1. Write the number without the decimal point.
2. Place the decimal so that the first number is 1 or more, but less than 10.
3. Count how many places you had to move the decimal point. The negative of this numbers becomes the exponent of 10.
4. Drop the zeros to the left of the left-most nonzero digit.

Express 0.0073 in scientific notation

1. Write the number without the decimal point.
2. Place the decimal so that the first number is 1 or more, but less than 10.
3. Count how many places you had to move the decimal point. The negative of this numbers becomes the exponent of 10 .
4. Drop the zeros to the left of the left-most nonzero digit.

12 Which is the correct decimal placement to convert 0.000832 to scientific notation?

○A 832
○B 83.2
OC . 832
OD 8.32

13 Which is the correct decimal placement to convert 0.000000376 to scientific notation?

OA 3.76
B $\mathbf{0 . 3 7 6}$
OC 376.
OD 37.6

14 How many times do you need to move the decimal point to change 0.00658 to 6.58 ?

○ 2
OB 3
○ 4
○D 5

15 How many times do you need to move the decimal point to change 0.000003242 to 3.242 ?

○A 5
-B 6
○ 7
OD 8

16 Write 0.00278 in scientific notation.
A $\quad 27.8 \times 10^{-4}$
OB $\quad 2.78 \times \mathbf{1 0}^{\mathbf{3}}$
OC 2.78×10^{-3}
OD $278 \times \mathbf{1 0}^{-3}$

17 Which of these is the only number larger than 1 in scientific notation?
\square A $\quad .34 \times 10^{-8}$
\square B $\quad 7.2 \times 10^{-3}$
\square C 8.9×10^{4}
\square D 2.2×10^{-1}
$\square E \quad 11.4 \times 10^{-12}$
$\square \mathrm{F} \quad .41 \times 10^{-3}$
More Practice \quad Slide 48/106

Express 0.001003 in scientific notation

1. Write the number without the decimal point.
2. Place the decimal so that the first number is 1 or more, but less than 10.
3. Count how many places you had to move the decimal point. The negative of this numbers becomes the exponent of 10. \qquad
4. Drop the zeros to the left of the left-most nonzero digit.

Slide 50 / 106

Express 0.000902 in scientific notation

1. Write the number without the decimal point
2. Place the decimal so that the first number is 1 or more, but less than 10.
3. Count how many places you had to move the decimal point. The negative of this numbers becomes the exponent of 10 . \qquad
4. Drop the zeros to the left of the left-most nonzero digit.
5. Write the number without the decimal point. \qquad
6. Place the decimal so that the first number is 1 or more, but less than 10.
7. Count how many places you had to move the decimal point. The negative of this numbers becomes the exponent of 10 .
8. Drop the zeros to the left of the left-most nonzero digit.

18 Write 0.000847 in scientific notation.

OA 8.47×10^{4}
B 847×10^{-4}
OC 8.47×10^{-4}
OD 84.7×10^{-5}

Slide 53 / 106

Return to
Table of
Contents

Express 3.5×10^{4} in standard form

1. Write the coefficient.
3.5
2. Add a number of zeros equal to the exponent: to the right for positive exponents and to the left for negative.
3. Move the decimal the number of places indicated by the exponent: to the right for positive exponents and to the left for negative.
[^1]
Express 1.02×10^{6} in standard form

1. Write the coefficient.
2. Add a number of zeros equal to the exponent: to the right for positive
exponents and to the left for negative.
3. Move the decimal the number of places indicated by the exponent: to the right for positive exponents and to the left for negative.
4. Drop unnecessary zeros and add comma, as necessary.
\qquad

Express 3.42×10^{-3} in standard form

1. Write the coefficient.
2. Add a number of zeros equal to the exponent: to the right for positive exponents and to the left for negative.
3. Move the decimal the number of places indicated by the exponent: to the right for positive exponents and to the left for negative.
4. Drop unnecessary zeros and add comma, as necessary.

Express 2.95×10^{-4} in standard form

1. Write the coefficient.
2. Add a number of zeros equal to the exponent: to the right for positive
exponents and to the left for negative.
3. Move the decimal the number of places indicated by the exponent: to the right for positive exponents and to the left for negative.
4. Drop unnecessary zeros and add comma, as necessary.

19 How many times do you need to move the decimal and which direction to change 7.41×10^{-6} into standard form?

OA 6 to the right
OB 6 to the left
OC 7 to the right
OD 7 to the left
\qquad
\qquad L_
\qquad
\qquad
\qquad
\qquad

Slide 59 / 106
20 How many times do you need to move the decimal and which direction to change 4.5×10^{10} into standard form?

OA 10 to the right
OB 10 to the left
OC 11 to the right
OD 11 to the left

21 Write 6.46×10^{4} in standard form.

OA 646,000
-B $\mathbf{0 . 0 0 0 0 0 6 4 6}$
OC $\mathbf{6 4}, \mathbf{6 0 0}$
OD 0.0000646

22 Write $3.4 \times 10^{\mathbf{3}} \mathrm{in}$ standard form.

A $\quad 3,400$
-B 340
OC 34,000
OD 0.0034

23 Write 6.46×10^{-5} in standard form.

OA 646,000
OB $\mathbf{0 . 0 0 0 0 0 6 4 6}$
C $\mathbf{0 . 0 0 6 4 6}$
OD $\mathbf{0 . 0 0 0 0 6 4 6}$

24 Write $1.25 \times 10^{-4} \mathrm{in}$ standard form.

○A 125
○B $\mathbf{0 . 0 0 0 1 2 5}$
○C $\mathbf{0 . 0 0 0 0 0 1 2 5}$
OD 4.125

25 Write 4.56×10^{-2} in standard form.

○A 456
-B 4560
OC $\mathbf{0 . 0 0 4 5 6}$
OD 0.0456

26 Write 1.01×10^{9} in standard form.

A 101,000,000,000
OB 1,010,000,000
OC $\mathbf{0 . 0 0 0 0 0 0 0 0 1 0 1}$
OD 0.000000101

| Comparing Numbers |
| :---: | :---: | :---: | :---: | :---: |
| Written in |
| Scientific Notation |

Comparing numbers in scientific notation

First, compare the exponents.
If the exponents are different, the coefficients don't matter; they have a smaller effect

Whichever number has the larger exponent is the larger number.

Comparing numbers in scientific notation

When the exponents are different, just compare the exponents.

\qquad
\square \square
\qquad
\qquad
\qquad
\qquad

Comparing numbers in scientific notation

If the exponents are the same, compare the coefficients.
The larger the coefficient, the larger the number (if the exponents are the same).

Comparing numbers in scientific notation

When the exponents are the same, just compare the coefficients.

27 Which is ordered from least to greatest?
OA I, II, III, IV
I. 1.0×10^{5}
OB IV, III, I, II
II. 7.5×10^{6}
OC I, IV, II, III
III. 8.3×10^{4}
OD III, I, II, IV
IV. 5.4×10^{7}

28 Which is ordered from least to greatest?
OA I, II, III, IV
I. $1.0 \times 10^{\mathbf{2}}$
OB IV, III, I, II
II. 7.5×10^{6}
OC I, IV, II, III
OD I, II, IV, III
III. 8.3×10^{9}
IV. 5.4×10^{7}
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

OA I, II, III, IV
I. 1×10^{2}

OB IV, III, I, II
II. 7.5×10^{3}

OC III, IV, II, I
III. 8.3×10^{-2}

OD III, IV, I, II
IV. $5.4 \times 10^{\mathbf{3}}$

30 Which is ordered from least to greatest?
OA II, III, I, IV
I. 1×10^{-2}
OB IV, III, I, II
II. 7.5×10^{-24}
OC III, IV, II, I
III. 8.3×10^{-15}
OD III, IV, I, II
IV. 5.4×10^{2}

31 Which is ordered from least to greatest?
OA I, II, III, IV
I. $1.0 \times 10^{\mathbf{2}}$
OB IV, III, I, II
II. 7.5×10^{2}
OC I, IV, II, III
III. 8.3×10^{2}
OD III, IV, I, II
IV. 5.4×10^{2}
\qquad

32 Which is ordered from least to greatest?
OA I, II, III, IV
I. 1.0×10^{6}
OB IV, III, I, II
II. 7.5×10^{6}
OC I, IV, II, III
III. 8.3×10^{6}
OD III, IV, I, II
IV. 5.4×10^{7}

33 Which is ordered from least to greatest?
OA I, II, III, IV
I. 1.0×10^{3}
OB IV, III, I, II
II. 5.0×10^{3}
OC I, IV, II, III
III. 8.3×10^{6}
OD III, IV, I, II
IV. 9.5×10^{6}

34 Which is ordered from least to greatest?

OA I, II, III, IV
I. 2.5×10^{-3}

OB IV, III, I, II
II. 5.0×10^{-3}

OC I, IV, II, III
III. 9.2×10^{-6}

OD
III, IV, I, II IV. $4.2 \times 10^{\mathbf{6}}$
.

Multiplying Numbers in Scientific Notation

Multiplying with scientific notation requires at least three (and sometimes four) steps.

1. Multiply the coefficients
2. Add the powers of ten
3. Combine those results
4. Put in proper form

Return to
Table of
Contents

Multiplying Numbers in
Scientific Notation
Multiplying with scientific notation requires at least three (and sometimes four) steps. 1. Multiply the coefficients 2. Add the powers of ten 3. Combine those results 4. Put in proper form
Return to Table of Contents

Multiplying Numbers in Scientific Notation

Evaluate: $\left(6.0 \times 10^{4}\right)\left(2.5 \times 10^{2}\right)$

1. Multiply the coefficients
$6.0 \times 2.5=15$
2. Add the powers of ten
$10^{4} \times 10^{2}=10^{6}$
3. Combine those results
15×10^{6}
4. Put in proper form
1.5×10^{7}

Evaluate: $\left(6.0 \times 10^{4}\right)\left(2.5 \times 10^{2}\right)$	
1. Multiply the coefficients	$6.0 \times 2.5=15$
2. Add the powers of ten	$10^{4} \times 10^{2}=10^{6}$
3. Combine those results	15×10^{6}
4. Put in proper form	1.5×10^{7}

Slide 80 / 106
\qquad \square \square \square 2

Multiplying Numbers in Scientific Notation

$$
\text { Evaluate: }\left(4.80 \times 10^{6}\right)\left(9.0 \times 10^{-8}\right)
$$

1. Multiply the coefficients
2. Add the powers of ten
3. Combine those results
4. Put in proper form

Evaluate (2.0×10^{-4}) $\left(4.0 \times 10^{7}\right)$. Express the result in scientific notation

A $\quad 8.0 \times 10^{11}$
B 8.0×10^{3}
C 5.0×10^{3}
OD 5.0×10^{11}
OE $\quad 7.68 \times 10^{-28}$
OF $\quad 7.68 \times 10^{-28}$

36 Evaluate $\left(5.0 \times 10^{6}\right)\left(7.0 \times 10^{7}\right)$

A $\quad 3.5 \times 10^{13}$
OB $\quad 3.5 \times 10^{14}$
OC $\quad 3.5 \times 10^{1}$
OD $\quad 3.5 \times 10^{-1}$
OE $\quad 7.1 \times 10^{13}$
OF $\quad 7.1 \times \mathbf{1 0}^{1}$

37 Evaluate $\left(6.0 \times 10^{2}\right)\left(2.0 \times 10^{3}\right)$

A 1.2×10^{6}
B 1.2×10^{1}
C 1.2×10^{5}
OD 3.0×10^{-1}
OE 3.0×10^{5}
OF 3.0×10^{1}

38 Evaluate $\left(1.2 \times 10^{-6}\right)\left(2.5 \times 10^{3}\right)$. Express the result in scientific notation.

OA 3×10^{3}
OB 3×10^{-3}
C 30×10^{-3}
OD $\quad 0.3 \times 10^{-18}$
OE $30 \times \mathbf{1 0}^{18}$

39 Evaluate (1.1 x 10^{4}) $\left(3.4 \times 10^{6}\right)$. Express the result in scientific notation.

A $\quad 3.74 \times 10^{24}$
B $\quad 3.74 \times 10^{10}$
C $\quad 4.5 \times 10^{24}$
OD $\quad 4.5 \times 10^{10}$
OE $\quad 37.4 \times 10^{24}$

40 Evaluate $\left(3.3 \times 10^{4}\right)\left(9.6 \times 10^{3}\right)$. Express the result in scientific notation.

A $\quad 31.68 \times 10^{7}$
OB 3.168×10^{8}
C 3.2×10^{7}
OD 32×10^{8}
OE 30×10^{7}

Slide 89 / 106

41 Evaluate $\left(2.2 \times 10^{-5}\right)\left(4.6 \times 10^{-4}\right)$. Express the result in scientific notation.

OA $\quad 10.12 \times 10^{-20}$
(B $\quad 10.12 \times 10^{-9}$
C 1.012×10^{-10}
OD 1.012×10^{-9}
OE 1.012×10^{-8}

Dividing Numbers in Scientific Notation

Dividing with scientific notation follows the same basic rules as multiplying.

1. Divide the coefficients
2. Subtract the powers of ten
3. Combine those results
4. Put in proper form

Division with Scientific Notation Evaluate: $\frac{5.4 \times 10^{6}}{9.0 \times 10^{2}}$
1. Divide the coefficients $5.4 \div 9.0=0.6$ 2. Subtract the powers of ten $10^{6} \div 10^{2}=10^{4}$ 3. Combine those results 4. Put in proper form 0.6×104 6.0×10^{3}

Division with Scientific Notation
Evaluate: $\frac{4.4 \times 10^{\text {© }}}{1.1 \times 10^{3}}$

1. Divide the coefficients
2. Subtract the powers of ten
3. Combine those results
4. Put in proper form

42 Evaluate 4.16×10^{-9}
$5.2 \times 10-5$
Express the result in scientific notation.

A $\quad 0.8 \times \mathbf{1 0}^{-4}$
OB $\quad \mathbf{0 . 8} \times \mathbf{1 0}^{-14}$
CC 0.8×10^{-5}
OD 8×10^{-4}
OE 8×10^{-5}

43 Evaluate 7.6×10^{-2}
 4×10

Express the result in scientific notation.

A 1.9×10^{-2}
B 1.9×10^{-6}
C 1.9×10^{2}
OD 1.9×10^{-8}
OE 1.9×10^{8}

44 Evaluate 8.2×10^{3}
$2 \times 10{ }^{7}$
Express the result in scientific notation.

OA 4.1×10^{-10}
B 4.1×10^{4}
OC 4.1×10^{-4}
OD 4.1×10^{21}
OE 4.1×10^{10}

45 Evaluate 3.2×10^{-2} 6.4×10

Express the result in scientific notation.

A $.5 \times 10^{-6}$
B $.5 \times 10^{-2}$
CC $.5 \times 10^{2}$
OD 5×10^{1}
OE $5 \times \mathbf{1 0}^{3}$

46 The point on a pin has a diameter of approximately 1×10^{-4} meters. If an atom has a diameter of 2×10^{-10} meters, about how many atoms could fit across the diameter of the point of a pin?

OA $\mathbf{5 0 , 0 0 0}$
© B 500,000
OC 2,000,000
OD 5,000,000

Addition and Subtraction with Scientific Notation

Numbers in scientific notation can only be added or subtracted if they have the same exponents.

If needed, an intermediary step is to rewrite one of the numbers so it has the same exponent as the other.

Return to
Table of
Contents

Addition and Subtraction

This is the simplest example of addition

$$
4.0 \times 10^{3}+5.3 \times 10^{3}=
$$

Since the exponents are the same (3), just add the coefficients.

```
4.0\times103+5.3 < 103 = 9.3 < 103
    This just says
        4.0 thousand
    +5.3 thousand
        9.3 thousand.
```

Slide 98 / 106
\qquad
\qquad \square \square
\qquad

\qquad

Slide 99 / 106

Addition and Subtraction

This problem is slightly more difficult because you need to add one extra step at the end.

$$
8.0 \times 10^{3}+5.3 \times 10^{3}=
$$

Since the exponents are the same (3), just add the coefficients.
$8.0 \times 10^{3}+5.3 \times 10^{3}=13.3 \times 10^{3}$

But that is not proper form, since $13.3>10$;
it should be written as 1.33×10^{4}

Addition and Subtraction

$$
8.0 \times 10^{4}+5.3 \times 10^{3}=
$$

This requires an extra step at the beginning because the exponents are different. We have to either convert the first number to 80×10^{3} or the second one to 0.53×10^{4}.

The latter approach saves us a step at the end.
$8.0 \times 10^{4}+0.53 \times 10^{4}=8.53 \times 10^{4}$
Once both numbers had the same exponents, we just add the coefficient. Note that when we made the exponent 1 bigger, coefficient. Note that when we made the exponent 1 bigger, that's makes the number 10x bigger; we had to make the coefficient $1 / 10$ as large to keep the number the same.

47 The sum of 5.6×10^{3} and 2.4×10^{3} is

A $\quad 8.0 \times 10^{3}$
B $\quad 8.0 \times 10^{6}$
C $\quad 8.0 \times 10^{-3}$
OD 8.53×10^{3}
Slide 101 / 106
\qquad \square \square \square \square
\qquad
488.0×10^{3} minus 2.0×10^{3} is
A $\quad 6.0 \times 10^{-3}$
B $\quad 6.0 \times 10^{0}$
C $\quad 6.0 \times 10^{3}$
OD $\quad 7.8 \times 10^{\mathbf{3}}$
$49 \quad 7.0 \times 10^{3}$ plus 2.0×10^{2} is
OA $\quad 9.0 \times 10^{3}$
B $\quad 9.0 \times 10^{5}$
C $\quad 7.2 \times 10^{3}$
OD $\quad \mathbf{7 . 2} \times \mathbf{1 0}^{\mathbf{2}}$
\qquad
\qquad
\qquad
\qquad
\qquad
$50 \quad 3.5 \times 10^{5}$ plus 7.8×10^{5} is
OA $\quad 11.3 \times 10^{5}$
B $\quad 1.13 \times 10^{4}$
OC $\quad 1.13 \times 10^{6}$
OD $\quad 11.3 \times 10^{10}$

[^0]: - Addition and Subtraction with scientific notation

[^1]: 4. Drop unnecessary zeros and add comma, as necessary.

 35,000

